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Probe sizes of selected techniques
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High-energy x-ray studies at the APS



High-energy scattering at 1-ID 

 Typical energy = 80keV (bulk 
probe)

 Current exposure times 1<t<100 
sec

 Expected flux increases 10-100 
X (via optimized undulator, 
improved optics, storage ring 
upgrade)

 Detectors should operate up to 
100hz to account for increases 

1-ID:  simultaneous SAXS / WAXS 
measurements with high spatial (micron-level) 
and temporal (sub-second) resolution

– WAXS:  strain, texture, phase ID

– SAXS:  porosity, nano-particle formation/ 
precipitation

– Full-field imaging for selected 
applications

– Focus on in situ measurements 

thermo-mechanical deformation, phase 
transformations, in-operando
chemistry, processing operations, etc



APS 1-ID beamline

Conical slit (7 rings)
•3D WAXS spatial resolution

GE detector



In-situ thermo-mechanical device

3 translations, 1 
rotation, 2 tilts

Degrees of freedom @ beamline

200 kgWeight

~1200 CMax Temp @ applied load

Load, displacement, 
strain

Control modes

Tension,

bending,

compression

Loading modes

100 mmStroke

+- 25 kNLoad rating

HydraulicsLoading mechanism

ValueSpecification

Custom-designed by Materials Testing Systems (MTS)
Infrared furnace (Research Inc) 



HE focusing using sawtooth refractive lenses
Collaborators:  C. Ribbing (Uppsala) and B. Cederstrom (KTH), Sweden  
Typical focal sizes:

18 um (weak focusing; zo:zi ~ 36:24 m)
1.5um (strong focusing; zo:zi ~ 60:1 m)

Even at ‘strong focusing’ the divergence is ~200 urad, low enough for high-quality diffraction



Case study: hydrides in zirconium alloys

Hydrogen Embrittlement of Zirconium

Overview of Research Work

– In-situ deformation study of zirconium 
hydrides 

– Crack tip mapping in un-hydrided material

– Crack tip mapping with previously grown 
hydrides

– In situ growth of hydrides at crack tip (later 
this month)



Zr-hydrides:  Background1

 Zircaloy Fuel 
Cladding 

– Pressurized or 
unpressurizedH2O 
coolant

– Temperatures 
range from 100 to 
greater than 
300oC

Corrosion reaction at Zr surface: Zr + 2H2O  ZrO2 + 4H

Reactors World Wide



Zr-hydrides:  Background2

 Zr-2.5Nb Pressure Tubes

– D2O coolant pressurized 
to     ~ 10MPa

– Temperatures range from          
~ 250oC (inlet) to 310oC 
(outlet)

Corrosion reaction at Zr surface: Zr + 2D2O  ZrO2 + 4D

CANDU Reactors

DO Northwood and U Kosasih, International Metals Reviews 28 (1983) 92



Hydride Characteristics

 Hydrides precipitate when solubility limit is exceeded

 Hydrides can reorient under an applied stress or in a temperature 
gradient or …

Tensile Stress

Cooled from above H Solubility Limit Cooled from above H Solubility Limit

100m

CE Coleman and JFR Ambler, Proc. 3rd Int. Conf. Zr Nuc. Ind., ASTM STP 633, 1977, pp 589



DHC Characteristics
… in the stress field around a flaw or notch!

Failure of components occurs by the fracture and 
re-growth of crack tip hydrides - Delayed Hydride Cracking (DHC)

10 m

Cracked Hydrides



Source Materials

Rolled Zircaloy-2 Plate
– Only -phase Zr present

• Simplified diffraction pattern
• Well characterized in terms of 
texture and mechanical 
properties

– Initial hydride orientation 
determined by texture (typical of 
fuel sheathing)

Zr-2.5Nb Pressure Tube
– -phase Zr present
– Initial hydride orientation 

determined by texture and residual 
stress state

ND

RD

TD

F Xu, RA Holt, and MR Daymond, Journal of Nuclear Materials 373 (2007) 217
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Hydride Diffraction Pattern

 Single peak fits (GSAS and Matlab) 
 Diffraction directly measures the elastic strain in the lattice

– Plastic behavior only inferred through load transfer behavior
 For comparison to elastic strain in Finite Element (FE) calculations, a weighted 

average of single diffraction peaks was used (multiplicity, texture, etc)

MR Daymond, Journal of Applied Physics 96 (2004) 4263



Overview: In-situ Bulk Deformation

 X-ray diffraction allows measurement of hydride mechanical properties 
in-situ

 Finite Element Analysis (composite unit cell) captures load transfer to 
the hydride phase

 Short Fiber Composite Mechanics predicts critical size for load transfer 
and hydride fracture
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Overview: Strain Mapping in Zircaloy-2
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Parallel to Applied Load – yy (AVG)

• 60m2 beam size, with a diffraction pattern acquired every 200m
• Single Peak fits give strain & intensity.

• Average strain calculated using a texture weighted average method

M Kerr, MR Daymond, RA Holt, and JD Almer, Proc. 12th Int. Conf. Fracture (2009)

Loaded along ND
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• Take average within region -0.2, 0 and 0.2mm from nominal 
crack line to construct strain vs position plots
• Data compared to FE model
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Overview: Strain Mapping in Zircaloy-2
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Overview: Hydride Strain Mapping

200 m

50 m2 spot size 

20 m2 spot size 

Zr-2.5Nb Pressure Tube
– 15 m root radius notch
– Large ~100 m hydrides 

grown at notch prior to 
experiment

 Loaded in-situ at 1-ID
– Incrementally loaded
– Mapped with 20 and 50 mm2

spot size  
– Tests at room temp and 
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Overview: Hydride Strain Mapping
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20% Overload 
relative to hydride growth load

30% Overload 
relative to hydride growth load

 Preliminary analysis indicates that hydride fracture can be resolved
 At a 20% overload, hydride is intact at the notch
 At a 30% overload, the notch tip hydride has fractured transferring load to the 

surrounding matrix



Summary
 High-energy x-ray scattering is a powerful technique for in-situ investigation of nuclear 

materials

 Sector 1 instrument benefits from:

– 7 GeV synchrotron + undulator source

– Optics:  

• Brilliance-preserving monochromator

• Refractive focusing lenses

• Conical slit

– Two-dimensional detectors (fast and large)

 Hydride studies

– High-intensity synchrotron permits detection of weak hydride peaks 

– Strain in each crystalline phase can be measured in-situ

– Finite Element Analysis (composite unit cell) captures load transfer to the hydride phase

– Short Fiber Composite Mechanics predicts critical size for load transfer and hydride 
fracture

– Small beams enable mapping of hydride content and fracture around crack tips

 Related studies not discussed here

– WAXS/SAXS during fracture of stainless-steel (Stubbins et al)



Outlook
APS renewal:  1-ID Upgrade
 Optimized undulator and customized hutches
 Expect >10x brilliance gain from undulator at 80keV

– mostly horizontal –> 2-d focusing
 Improved temporal resolution -> kinetic studies 
 Improved vertical resolution through R&D (thermal control, dedicated 

equipment)
• ~100-500 nm theoretically possible with CRLs, with sufficiently low divergence 

for diffraction
 Reduction in q(min) for HE-SAXS

– Through optimized detector (match potentially longer samp-det distances) 
and improved control of parasitic scattering (2-d focusing + slit system).

– Access larger features and reduce ambiguity in analysis
 Increased use of complementary full-field imaging

APS -> ERL
 Increased potential for 2-d focusing/temporal studies
 Increased coherence will enhance fidelity of imaging data
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